10.数乘向量的数量积,可以与任一向量交换结合,即对任意实数λ,有(?λ=_________.
本节课的学习目标是掌握向量数量积的运算规律,并准确运用;重点是注意结合律的正确使用.学习本节课应注意的问题:
1.对于分配律,用向量数量积的几何意义给出了证明.在学习与使用时,可以类比数量乘法的交换律.但要明确它们的不同.
(1)已知实数)0≠b c b a (、、,则c a bc ab =?=;但对于向量、、,该推理是不正确的,即a ·b =b ·不一定可以推出a =.只有当向量a 、b 、共线且同向时,才成立,否则就不成立.
比如:a =3,b =1,c =3,,b>
=30°,=60°, 经过计算可知:·=·,但≠.
(2)(a +b )·(a -b )=22-.在以后的运算中,可以直接运用.
7 3.设a ,b ,是平面内任意的非零向量且相互不共线,则下列各式中:
向量数量积的运算律 新知检索 8.向量数量积满足交换律:·=__________________________. 9.向量数量积满足分配律:(+)·=______________________. 10.数乘向量的数量积,可以与任一向量交换结合,即对任意实数λ,有(?λ=_________. 学法指导 本节课的学习目标是掌握向量数量积的运算规律,并准确运用;重点是注意结合律的正确使用.学习本节课应注意的问题: 1.对于分配律,用向量数量积的几何意义给出了证明.在学习与使用时,可以类比数量乘法的交换律.但要明确它们的不同. (1)已知实数)0≠b c b a (、、,则c a bc ab =?=;但对于向量、、,该推理是不正确的,即a ·b =b ·不一定可以推出a =.只有当向量a 、b 、共线且同向时,才成立,否则就不成立. 比如:a =3,b =1,c =3,,b>
=30°,=60°, 经过计算可知:·=·,但≠. (2)对于实数c b a 、、有(ab )c =a (bc ),但对于向量、、c ,(·)·c ≠·(·c ),是因为(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 一般并不共线,所以(a ·b )·c ≠a (b ·c ) . 2.教材中的例题1是直接对数量积性质、运算律的应用.其中推得结论: (1)2(+=222b b a a +?+; (2)(a +b )·(a -b )=22-.在以后的运算中,可以直接运用. 3.用向量知识证明几何问题.用向量解题可分为三步:
平面向量的数量积及运算律 学校上南中学 姓名欧阳民 教学目的: 1.掌握平面向量数量积运算规律; 2.能利用数量积的5个重要性质及数量积运算律解决有关问题; 3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律. 教学难点:平面向量数量积的应用 教学过程: 一、复习引入: 1.复习两个非零向量夹角的概念。 2.问题探索:利用物理学中的做功问题,来引入平面向量数量积(内积)的定 义: θcos b a b a =? 3.“投影”的概念: 定义:b cos θ叫做向量b 在a 方向上的投影。 4.向量的数量积的几何意义: 数量积a ?b 等于a 的长度与b 在a 方向上投影b cos θ的乘积。 例1.若45==b a ,,当a 与b 的夹角为0120时,求b a ?。 变式1 若45==b a ,,当b a ⊥,求b a ?; 变式2 若45==b a ,,当b a //,求b a ?,a a ?; 变式3 若45==b a ,,当210=?b a ,求a 与b 的夹角; 变式4 若45==b a ,,当a 与b 的夹角为060时,求b a ?。 练一练,比一比: 1.已知68==q p ,,p 与q 的夹角为060,求q p ?。 2.设912==b a ,,254-=?b a ,求a 与b 的夹角。 3.已知ABC ?中,,,b a ==当00=??b a 呢? 二、平面向量数量积的运算律 1.交换律:a ? b = b ? a 2.数乘结合律:(λa )?b =λ(a ?b ) = a ?(λb ) 3.分配律:(a + b )?c = a ?c + b ?c
8.1.2 向量数量积的运算律 (教师独具内容) 课程标准:理解掌握数量积的性质和运算律,并能运用性质和运算律进行简单的应用. 教学重点:向量数量积的性质与运算律及其应用. 教学难点:平面向量数量积的运算律的证明. 【知识导学】 知识点 平面向量数量积的运算律 已知向量a ,b ,c 与实数λ,则 交换律 a ·b =□ 01b ·a 结合律 (λa )·b =□ 02λ(a ·b )=□03a ·(λb ) 分配律 (a +b )·c =□ 04a ·c +b ·c 【新知拓展】 对向量数量积的运算律的几点说明 (1)向量数量积不满足消去律:设a ,b ,c 均为非零向量且a ·c =b ·c ,不能得到a =b .事实上,如图所示,OA →=a ,OB →=b ,OC → =c ,AB ⊥OC 于D ,能够准确的看出,a ,b 在向量c 上的投影分别为a cos ∠AOD ,b cos ∠BOD ,此时b cos ∠BOD =a cos ∠AOD =OD .即a ·c =b ·c .但很显然b ≠a . (2)向量的数量积不满足乘法结合律:一般地,向量的数量积(a ·b )c ≠a (b ·c ),这是由于a ·b ,b ·c 都是实数,(a ·b )c 表示与c 方向相同或相反的向量,a (b ·c )表示与a 方向相同或相反的向量,而a 与c 不一定共线.判一判(正确的打“√”,错误的打“×”) (1)对于向量a ,b ,c 等式(a·b )·c =a ·(b·c )恒成立.( ) (2)若a·b =a·c ,则b =c ,其中a ≠0.( ) (3)(a +b )·(a -b )=a 2 -b 2 .( ) 答案 (1)× (2)× (3)√ 2.做一做
向量数量积的运算律 制作人:张明娟 审核人:叶付国 使用时间:2012-5-8 编号:12022 学习目标: 1、 掌握平面向量数量积的运算律及其运算; 2、 通过向量数量积分配律的学习,体会类比、猜想、证明的探索性学习 方法; 3、通过解题实践,体会向量数量积的运算方法. 学习重点:向量数量积的运算律及其应用. 学习难点:向量数量积分配律的证明. 重点知识回顾: 1、两个向量的夹角的范围是: ; 2、向量在轴上的正射影 正射影的数量为 ; 3、向量的数量积(内积):a ·b = ; 4、两个向量的数量积的性质: (1)b a ⊥? ; (2)a a ?= 或a = ; (3)θcos = ; 向量数量积的运算律 平面向量数量积的常用公式 证明:(1) (2) c b c a c b a b a b a b a b a a b b a ?+?=?+?=?=?=??=?))(3(;)()())(2(; 1λλλλ)(222 2))(1(b b a a b a +?+=+2 2))()(2(b a b a b a -=-+
《空间向量数量积的运算》教学反思 本节课我讲了选修2-1第三章《空间向量的数量积运算》这个节,这是本章第三节的内容,主要学习的是空间向量的数量积的运算及应用。根据大纲,要求学生能熟练应用空间向量的运算解决简单的立体几何问题,这也是本节课的难点。突破难点的方法是让学生会用已知向量表示相关向量,是利用三角形法则或多边形法则把未知向量表示出来,进而再求两个向量的数量积、夹角、距离等。 三方面实行整体设计,注重与学生已有知识的联系及相关学科知识的联系(物理学:功),因为本节知识是向量由二维向三维的推广,所以预习平面向量的运算起了一定的作用,使学生体会知识的形成过程和数学中的类比学习方法。在整个教学过程中,我还是沿用知识复习、学生探究、教师例题分析、师生合作归纳小结的主线实行教学,符合学生的认知规律,也易于学生对知识的掌握,在教育学生的方式上,我注重多媒体演示和传统板书教学有效结合,较好地辅助了教学。同时,结合新高考的要求,我注重了数学核心素养的培养,在教学中例题分析与归纳时,我注重了数学思想方法的渗透,如本节课我就渗透了数形结合思想、类比思想等,本节课的核心理念是体现学生在学习中的主体性。但我注重调动学生的主观能动性,最大限度的发挥学生的主体作用,在教学过程中,学生的思维活跃,积极讨论问题,自主解决相关例题。精彩处在于学生热情参加互动,学生评判,教师引导,学生积极归纳知识点,整个课堂热烈有序,张而有驰,整体课多次出现教学高潮,博得了学生与听课专家的热烈掌声,从课后反馈来看,本堂课普片反应学懂了,掌握了知识和解决实际问题的水平,正在学有所用。 不足之处:在创设情境时,我用的是知识性引课,不够引人入胜,要是能想出更好的引课方式或动画设计,在一开始就抓住学生的眼球,调动起学生学习的积极性,应该效果会更好。其次,在课堂中没有充分的发挥学生的主体性,老师由引导者又逐步变成了主导者。另外,难点突破应该在两个例题上,不过前边耽误了时间,导致重点地方没有充足的时间解决,没达到最初的意图。对问题的探究需要时间,课上让学生放开去探究,减少了课堂容量,影响到了例题的分析讲解。应
平面向量的数量积测试题 (时间60分钟,满分100分) 一、选择题:(每小题5分,共30分) 1、已知a 、b 为两个单位向量,下列四个命题正确的是( ) (A )a =b (B )a ·b =0 (C )a ·b
3.1.3 空间向量的数量积运算 课时目标 1.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积概念、性质和计算方式及运算规律.2.掌握两个向量的数量积的主要用途,会用它解决立体几何中的夹角及距离问题. 1.空间向量的夹角 定义 已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫 做向量a ,b 的夹角 记法 范围 ,想一想:〈a ,b 〉与〈b ,a 〉相等吗?〈a ,b 〉与〈a ,-b 〉呢? 2.空间向量的数量积 (1)定义:已知两个非零向量a ,b ,则ab cos 〈a ,b 〉叫做a ,b 的数量积,记作a·b . (2)数量积的运算律 (3) 一、选择题 1.设a 、b 、c 是任意的非零向量,且它们相互不共线,下列命题: ①(a·b )·c -(c·a )·b =0; ②a -b-b ; ③(b ·a )·c -(c ·a )·b 不与c 垂直; ④(3a +2b )·(3a -2b )=9a 2-4b 2. 其中正确的有( ) A .①② B .②③ C .③④ D .②④ 2.若a ,b 均为非零向量,则a·b =ab 是a 与b 共线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.已知a ,b 均为单位向量,它们的夹角为60°,那么a +3b 等于( )
平面向量数量积运算的解题方法与策略 平面向量数量积运算一直是高考热点内容,它在处理线段长度、垂直等问题的方式方法上尤为有突出的表现,而正确理解数量积的定义和几何意义是求解的关键,同时平面向量数量积的运算结果是实数而不是向量,因此要注意数量积运算和实数运算律的差异,本文仅举数例谈谈求解向量数量积运算的方法和策略。 1.利用数量积运算公式求解 在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用比较广泛,即(a +b ) 2 =a 2+2a 2b +b 2,(a -b )2=a 2-2a 2b +b 2 上述两公式以及(a +b )(a -b )=a 2 -b 2 这一类似于实数平方差的公式在解题过程中 可以直接应用. 例1 已知|a |=2,|b |=5,a 2b =-3,求|a +b |,|a -b |. 解析:∵|a +b |2=(a +b )2=a 2+2a 2b +b 2=22+23(-3)+52 =23 ∴|a +b |=23,∵(|a -b |)2 =(a -b )2 =a 2 -2a 2b +b 2 =22 -23(-3) 352 =35, ∴|a -b |=35. 例2 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°). 解析:∵(|a +b |)2=(a +b )2=a 2+2a 2b +b 2=|a |2 +2|a |2|b |co sθ+|b | 2 ∴162=82+238310cosθ+102 , ∴cosθ= 40 23 ,∴θ≈55° 例3 已知a =(3,4),b =(4,3),求x ,y 的值使(xa +yb )⊥a ,且|xa +yb |=1. 分析:这里两个条件互相制约,注意体现方程组思想. 解:由a =(3,4),b =(4,3),有xa +yb =(3x +4y ,4x +3y ) 又(xa +yb )⊥a ?(xa +yb )2a =0?3(3x +4y )+4(4x +3y )=0 即25x +24y =0 ① 又|xa +yb |=1?|xa +yb |2=1?(3x +4y )2+(4x +3y )2 =1 整理得:25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2 =1 ② 由①②有24xy +25y 2 =1 ③ 将①变形代入③可得:y =± 7 5 再代回①得:??? ????=-=???????-==7535 24753524y x y x 和
3.1.3空间向量的数量积运算 整体设计 教材分析 本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方式、性质和运算律,并举例说明利用向量的数量积处理问题的基本方法. 通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.课时分配 1课时 教学目标 知识与技能 1.掌握空间向量夹角的概念及表示方法; 2.掌握两个向量数量积的概念、性质和计算方式及运算律; 3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 过程与方法 1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数量积运算的意义. 情感、态度与价值观 1.培育学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培育学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数量积运算及其运算律、几何意义; 2.空间向量的数量积运算及其变形在空间几何体中的应用. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数量积运算及其几何应用和理解. 教学过程 引入新课 提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段 D′C′上,D′F=1 2FC′,怎么样确定BE → ,FD → 的夹角?
第十一教时 教材:平面向量的数量积及运算律 目的:掌握平面向量的数量积的定义及其几何意义,掌握平面向量数量积的性质和它的一些简单应用。 过程: 一、复习:前面已经学过:向量加法、减法、实数与向量的乘法。 它们有一个共同的特点,即运算的结果还是向量。 二、导入新课: 1.力做的功:W = F?scosθ θ是F与s的夹角 2.定义:平面向量数量积(内积)的定义,a?b = abcosθ, 并规定0与任何向量的数量积为0 。? 3. 4.注意的几个问题;——两个向量的数量积与向量同实数积有很大区别 1?两个向量的数量积是一个实数,不是向量,符号由cosθ的符号所决定。 2?两个向量的数量积称为内积,写成a?b;今后要学到两个向量的外积a×b, 而ab是两个数量的积,书写时要严格区分。 3?在实数中,若a≠0,且a?b=0,则b=0;但是在数量积中,若a≠0,且a?b=0, 不能推出b=0。因为其中cosθ有可能为0。这就得性质2。 4?已知实数a、b、c(b≠0),则ab=bc ? a=c。但是c 如右图:a?b = abcosβ = bOA b?c = bccosα = bOA ?ab=bc但a≠c 5?在实数中,有(a?b)c = a(b?c),但是(a?b)c≠a(b?c) 显然,是因为左端是与c共线的向量,而右端是与a共线的向量,而一般 a与c不共线 例一(略) 三、投影的概念及两个向量的数量积的性质: 1.“投影”的概念:作图 定义:bcosθ叫做向量b在a方向上的投影。 注意:1?投影也是一个数量,不是向量。 2?当θ为锐角时投影为正值; 当θ为钝角时投影为负值; 当θ为直角时投影为0; 当θ = 0?时投影为b; 当θ = 180?时投影为-b。 2.向量的数量积的几何意义: 数量积a?b等于a的长度与b在a方向上投影bcosθ的乘积。 3.两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量。 1?e?a = a?e =acosθ 2?a⊥b?a?b = 0 3?当a与b同向时,a?b = ab;当a与b反向时,a?b = -ab。 特别的a?a = a2或a a a? = C θ = 0? θ = 180? O O B B A A O O B O B1 O a b θ A O O B O B1 O a b θ A O O B O (B1) O a b θ
本站资源均为网友上传分享,本站仅负责收集和整理,有任意的毛病请在对应网页下方投诉通道反馈